Machine learning and optical quantum information

<u>K. Bartkiewicz</u>^{1,2,3}, A. Černoch², C. Gneiting³ K. Jiráková², K. Lemr², F. Nori^{3,4} J. Roik², V. Trávníček²

> ¹Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, Poland

> > ²Joint Laboratory of Optics of Palacký University and Institute of Physics of Czech Academy of Sciences, Czech Republic

³Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Japan

⁴Department of Physics, The University of Michigan, USA

QO X, Toruń, 10.09.2021

Timeline

Context

- ML: route selection (Google maps), friend tagging suggestions (Facebook: deepface), ETA and personalization (Uber), iPhone: FaceId (Apple), self-driving car (Tesla), recommender systems at Netflix (75% success rate) and Amazon (35% of revenue), Google Translate (most statistically probable translation), KUKA (industrial robots – can learn ping-pong), IT security, ...
- Challenges in classical ML: instability of generative models, unsupervised learning, explainability, confidence intervals, reasoning and probabilistic inference, energy consumption (M. Matuszewski)...
- Better ML with quantum physics? Better quantum physics with ML? (e.g. Google, IBM, Microsoft, Xanadu, Dwave, NASA, NTT, RIKEN, ...)...

Typology of ML in quantum physics

- There are several approaches to quantum machine learning (QML) depending on the type of data/algorithm.
- Here, we focus on CQ, QC, and classification, and clustering problems.
- There are two main approaches to creating a highly nonlinear predictive model: **quantum kernels** and **quantum ANN**.

Classification: two main QML approaches

Quantum Artificial Neural Networks:

- F. Tacchino et al., npj Quantum Information **5**, 26 (2019)
- E. Farhi and H. Neven, arXiv:1802.06002 ...

Kernel-based QML (SVM in larger space):

- V. Havlíček et al., Nature **567**, 209 (2019)
 - KB et al., Sci. Rep. 10, 12356 (2020), manuscript ready in early 2019.
- M. Schuld and N. Killoran, Phys. Rev. Lett. **122**, 040504 (2019)
- R. Chatterjee and T. Yu, Quantum Inf. Commun. **17**, 1292 (2017)

SVMs gained popularity in the 1990s, method of choice for many practical problems.

Xanadu

BM

Kernel-based QML

• Representer theorem (kernel trick):

$$f^*(x) = \sum_{m=1}^M a_m \kappa(x, x^{(m)})$$

• Feature map (FM), 1D

$$x \rightarrow |\psi(x)\rangle = \sum_{n=0}^{N} \sqrt{r_n} e^{i2\pi nx} |n\rangle, \sum_{n=0}^{N} r_n =$$

$$x \rightarrow |\psi(x)\rangle$$

 \cap

0 ⁰

0 0

0

0

0

1

° °

0

0

 x_1

0

0

 x_2

0

$$f^*(x)$$

 $\kappa(x, x') = |\langle \psi(x') | \psi(x) \rangle|^2$

Kernel-based QML

Training data, class BLUE

• Representer theorem (kernel trick):

$$f^*(x) = \sum_{m=1}^M a_m \kappa(x, x^{(m)})$$

• Feature map (FM), 2D

$$x \to |\psi(x)\rangle = \sum_{n=0}^{N} \sqrt{r_n r_m} e^{i2\pi(nx_1 + mx_2)} |n, m|$$

Kernel-based QML: cosine kernel

• Definition:

$$\kappa(x',x) = |\langle \varphi(x') | \varphi(x) \rangle|^2 = \prod_{n=1}^{D} \cos^{2N}(x'_n - x_n)$$

• Resolution of a naive FM (angle encoding):

Kernel-based QML: cosine kernel

• Definition:

$$\kappa(x',x) = |\langle \varphi(x') | \varphi(x) \rangle|^2 = \prod_{n=1}^{D} \cos^{2N}(x'_n - x_n)$$

• Resolution enhancement:

NOTATION in 1D: $\kappa(x', x) = \kappa(x' - x)$

Kernel-based QML: finite HS and resolution (1D)

Truncated squeezed states (TSQ), Multi-slit interference states (MSI), Cosine kernel (CK)

Optimal map can be well approximated as a product of CK and MSI maps, where the joint size of the HS is N.

KQML: two-photon setup (2D)

KQML: experimental implementation

Can experimental KQML outperform a classical computer? (scikit-learn SVC in Python)

KQML: experimental implementation

+ Be

Better performance on the test set

(by a data point close to the decision boundary)

Supervised KQML: Advantage

The quantum advantage:

classical power kernel: O[log(N)](recursive classical algorithm) vs. quantum kernel: O(1). [Grover-Rudolph-like speedup: factor of 1/log(N)]

We (and other groups) work on observing **quantum advantage in the expressive power** of quantum kernels for some datasets.

KQML: Scaling to higher dimensions

- Higher dimensions by properly stacking layers of BDs and waveplates.
- We **did NOT use layers** to demonstrate the main advantage (simplicity) of KQML over QANN.
- For larger setups it is useful to parametrize kernels using **Tensor Networks** (MPS).
- Number of steps to perform FM: O(DN)/O(log(DN)) (Grover-Rudolph 2002), but not always [Phys. Rev. Lett. 107, 120501 (2011)]

Gate depth for optical q. computing setups: 12 for 24 spatial modes (www.xanadu.ai)

- D. Garcia, F. Verstraete, M. M. Wolf, J. I. Cirac, Quantum Info. Comput. 7, 401 (2007)
- Y. Liu, X. Zhang, M. Lewenstein, S.-J. Ran, arXiv:1803.09111 (2018)
- D. Liu, S.-J. Ran, P. Wittek, C. Peng, R. B. García, G. Su, M. Lewenstein, *New J. Phys.* 21, 073059 (2019)
- Conference papers on ANNs

Unsupervised CQ ML: K-means clustering

JanWei Pan

Amplitude encoding & SWAP test:

- X.-D. Cai et al., Phys. Rev. Lett.
- **114,** 110504 (2015)

Dense amplitude encoding & HSD:

 V. Trávníček, KB, A. Černoch, K. Lemr, Phys. Rev. Lett. **123**, 260501 (2019)

 $D_{HS}\left(\hat{\rho}_{1},\hat{\rho}_{2}\right)\equiv\sqrt{\mathrm{Tr}[(\hat{\rho}_{1}-\hat{\rho}_{2})^{2}]}$

https://upload.wikimedia.org/wikipedia/commons/e/ea/K-means_convergence.gif

Unsupervised CQ ML : Distance measurement

 $D_{HS}\left(\hat{\rho}_{1},\hat{\rho}_{2}\right) = \sqrt{\mathrm{Tr}[\hat{\rho}_{1}\hat{\rho}_{1}] + \mathrm{Tr}[\hat{\rho}_{2}\hat{\rho}_{2}] - 2\mathrm{Tr}[\hat{\rho}_{1}\hat{\rho}_{2}]}$

- 4 POVMs per observable for 2 qubits (N = 15) (# linear in number of qubits)
- HS distance measurement: $O[log(N = D^2 1)]$
- Classical distance computation: *O*[Poly(*N*)]

Proof of Strong Asymptotic Quantum Speedup
 Quadratic enhancement over the SWAP test

Unsupervised CQ ML: Measured data

Unsupervised CQ ML: Error robustness

From CQ to QC

Reinforcement QC ML

J. Jašek, K. Jiráková, KB, A. Černoch, T. Fürst,
 K. Lemr, Opt. Express, 27, 32454 (2019)

Driving research in q. physics with deep ANNs

- J. Roik, KB, A. Černoch, K. Lemr, Phys. Rev. Applied, **15**, 054006 (2021)
- S. Ahmed, C. Munoz, F. Nori, A. Kockum, Phys. Rev. Research, in press (2021)

Variational quantum circuit

Driving research in q. physics with ANNs

Entanglement or no entanglement (without tomography)

Group meetings during the pandemic

Plato's Academy mosaic from the Villa of T. Siminius Stephanus in Pompeii.

Athens c. 387 BC

Funding

Kernel based quantum machine learning in optical circuits, GAČR (CZ) 19-19002S

Fundamental problems and implementations of dissipative quantum engineering, NCN (PL) 2019/34/A/ST2/00081

Conclusions

Exponential kernel FM resolution enhancement in comparison to standard approach

Many q. kernels can be evaluated much faster (Grover-Rudolph-like scaling instead of polynomial complexity)

Strong asymptotic quantum speedup for HSD-based CQ ML (from polynomial to logarithmic)

Quadratic enhancement better than Swap Test thanks to dissipative state preparation

We combined **boson sampling and classical control** in our demonstration of reinforcement ML applied to VQC

Deep ANN demonstrated classification of quantum states can be improved

http://bark.home.amu.edu.pl/qmlg.html

https://dml.riken.jp/pub/ai_meets_qp/ Recruiting for a postdoc in QML!